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Overview
Motivation Software DemonstrationMotivation Software Demonstration

• Interactive software environment allows visual 

assessment in addition to numerical performance 
Forecasting ApplicationsForecasting ApplicationsDevelop data-driven algorithms for prognostics 

and demonstrate their applicability on diverse 

• Evaluate different algorithms for their 

assessment in addition to numerical performance 

tracking.
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and demonstrate their applicability on diverse 

applications to benchmark prognostic 

performance.

• Evaluate different algorithms for their 

suitability for various applications

• Assess trade-offs that arise from
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• Amount of data needed

• Computational complexity

• Robustness towards input space 
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• Ability to support uncertainty management

• Accuracy and usability of predictions 

(prediction horizon)
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Features
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• Develop performance evaluation metrics for 

prognostics
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Algorithms should be developed to cater to specific prediction tasks

• Runs multiple prediction algorithms

• Tracks and compares prediction performance 

simultaneously

Algorithms

Algorithms should be developed to cater to specific prediction tasks
• Computes performance metrics

Algorithms

Gaussian Process Regression Artificial Neural NetworksRelevance Vector Machines

• Supervised learning belonging to the family • Universal function approximators• Supervised learning algorithm using • Supervised learning belonging to the family 

of least squares estimation algorithms 

• Bayesian framework to derive posteriors 

from priors (history data)

• Universal function approximators

• Widely used for data-driven learning, i.e. 

provide a well represented prognostic 

technique, e.g. DWNN, CPNN

• Supervised learning algorithm using 

expectation maximization

• Stochastic sparse kernel method similar to 

Support Vector Machines from priors (history data)

• Provides mean and variance estimates for 

the predictions

–Prior

technique, e.g. DWNN, CPNN

• Do not incorporate uncertainty 

management inherently

Support Vector Machines

• Allows probabilistic outputs in a Bayesian 

framework

–Data

Polynomial Regression

–Prior
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–Data

–Likelihood of the data set Polynomial Regression

–Posterior
A simple regression approach, here 

used as baseline for comparisons
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Design matrix (kernel functions)
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–Predictions for the new observations x*

Performance Evaluation
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Performance Evaluation

• Performance evaluation is key for prognostics 
technology maturation and deployment

MetricsKey Issues
• Approach

–A variety of metrics are under investigation and 

• A variety of performance metrics developed 
specifically for prognosticstechnology maturation and deployment

–A stringent performance evaluation is needed before 
prognostics can be used in critical fielded applications

–e.g. a maintainer must trust a prediction before 

–A variety of metrics are under investigation and 
being used to evaluate different data-driven 
algorithms

–New metrics are being developed and evaluated

specifically for prognostics

–New metrics track performance dynamics

–Metrics like α-λ accuracy, convergence, relative 
accuracy, and prediction horizon are  introduced–e.g. a maintainer must trust a prediction before 

scheduling maintenance 

–Metrics help establish design requirements

–Allow comparing different algorithms to establish 
application specific suitability

Performance Metrics
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• Lack of standardized methods for prognostic 
performance evaluation calls for new metrics 

application specific suitability

–Provide feedback to help improve algorithms Accuracy

Robustness
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performance evaluation calls for new metrics 
customized for Prognostic Health Management 
scenarios

–Need a better account of uncertainty management 

Precision

Trajectory
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• A diverse set of prognostics applications are being 
used for benchmarking

–Need a better account of uncertainty management 

–Performance should improve as end-of-life 
approaches

–Traditional metrics based on accuracy, precision,  
and robustness should be extended to  suit 

Computational Performance

Cost-benefit

–NASA prognostics repository hosts variety of data sets 
with run-to-failure characteristics 

– http://ti.arc.nasa.gov/project/prognostic-data-repository/

–Data sets include mechanical, electrical, electronics,  
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and robustness should be extended to  suit 
prognostics

–Data sets include mechanical, electrical, electronics,  
and aerospace systemsMetrics can be classified under several categories 


